
Sorting of objects using additional sensors

Sorting of objects using additional sensors

Ioana-Denisa Barbos

AXHT 3085/3

Informatik

HTBLuVA

St. Pölten, Austria

ioana-denisa.barbos@htlstp.at

Tiago Lourenço da Silva

AXHT 3085/3

Maschinenbau

HTBLuVA

St. Pölten, Austria

tiago.lourencodasilva@htlstp.at

Anna Theis

AXHT 3085/3

Maschinenbau

HTBLuVA

St. Pölten, Austria

anna.theis@htlstp.at

Abstract— This text is about the problems that can be faced

when trying to recognize the colors correctly and how the light

and color sensors work. In this robot the TCS3200 color sensor

was used because of the variation of the IR light sensor. One

possibility to connect the TCS3200 to the Wallaby to detect the

colors red and green is via an Arduino.

Keywords— color sensor, TCS3200, ESP32, Arduino,

conveyor, container, programming, XHT 3085/3

I. INTRODUCTION

Many things need to be sorted. For that particular

reason, it is a very regular problem. An example would be

recycling, where different materials or parts must be

categorized so that they can be reused or repaired. [1]

Therefore, it is no surprise that our situation was similar.

Because of the decision that the XHT 3085/3 was supposed

to sort the poms, a system that was quick and reliable had

to be developed.

II. CONCEPT AND DESIGN

The first thing that comes to mind when thinking of a sorting

system is a conveyor belt. For that reason, a prototype was

designed, which consisted of the belt itself, two sensors and

a divider in a drop shoot. The idea behind it was, that the

collected poms would be pulled onto the conveyor belt and

the sensors located on the sides would decide which color

the pom had. Depending on that result, the following shoot

would open either the left or the right hole. These containers

would get filled up during the way to the other side of the

table and let the poms fall into the newly attached

transporter.

Figure 1: conveyor belt and color sensor

III. IMPLEMENTATION

Due to the lack of space, only one of the sensors ended up

being used instead of the originally planned two, which

might result in a less accurate system. Another difference

is the location of the poms while transported by the

conveyor belt. A result of experimentation found that the

system would run better if the poms were squeezed in

between a metal plate and the belt. Another positive result

of this change is that the conveyor belt can have a much

steeper angle, which saves a lot of space.

IR Light Sensor:

The first choice for recognizing the colors was the IR

(infrared) light sensor of the botball set. The tests

resulted in the following analog values [2], [3]:

Table 1: Measurement of Botball IR Light Sensor

Due to the variation at a longer distance and almost identical

values at a smaller distance the IR light sensor no longer was

the best option.

Color Sensor:

As the light sensor was not suitable, a color sensor was due.

Those photoelectric devices can emanate light and identify

the color of reflected light from an object in the RGB scale

with different wavelengths [4], [5], [6]. The first option for

a sensor was the TCS34725 [7]. The only disadvantage was

that when there is no lighting present, the values are more

likely to be dependent on the ambient light. At last, the

TCS3200 was used, because it has four LEDs as additional

light, which is often used in projects. First the pins S2 and

S3 need to be set in order to activate the photo sensors for

distance 1mm 5mm

black ~3800 ~3300

white ~160 ~250 (varies greatly)

green ~190 ~2400 (varies greatly)

red ~190 ~1300 (varies greatly)

the detection of either red, green or blue. The more of the

chosen color is seen by the sensor, the higher the output

frequency is [8]. The connection to the Wallaby from

TCS3200 color sensor was established via an ESP32. It is a

microcontroller with integrated Wi-fi and Bluetooth. On

top of that, it achieves very low power consumption through

power saving features including multiple modes of

operation. It works on the same voltage as the wallaby itself

(3.3 Volt), which helps establishing the connection between

the controllers.

First, a program for the ESP32 had to be written. In the first

six lines of code the pins on the sensor were defined. The

pins S0 and S1 were for the output frequencies scaling

selection inputs. Pins S2 and S3 were the inputs for the

photodiode color selection. So, you can select the color to

be detected. There are photodiodes available for red, green

and blue. The PIN_COLORSENSOR_OUT is used as an

input for the frequencies, which represents the intensity of

the colors. Lastly, there is the PIN_CON_WALLABY pin,

which is used as an output, in order to use the program of

the sensor with the existing program on the Wallaby.

Figure 2: Code of Pindefinitions and Libraryimplementation

Figure 3: Code of Setup

After defining some other variables, the program with

defining the pins as an out- or input and setting the

frequency-scaling to 2% in order to read out more defined

values, can be started.

The main program – void loop():

In the beginning of the loop the color function is called. In

this function the values of the color sensor can be read. In

order to read red both pins S2 and S3 need to be set to low.

The frequency is calculated by 1/ time period, using the

time of the pulse read by the PIN_COLORSENSOR_OUT

with 3.3 V positive the pulse of the

PIN_COLORSENSOR_OUT with 0 V. The same is done

for getting the green value except that both pins S2 and S3

are high. Another thing that was found out after

experimenting, was that the value for the greenFreq (green

frequency) was way too high and 70% ended up being used

as a correctional factor according to the datasheet page

seven[8].

Figure 4. Code of color frequency detection

After that, these values could be used to determine whether

the color, which was read out is red or green. This was done

by looking up which value was higher. If redFreq (red

frequency) was higher, the PIN_CON_WALLABY pin

was put on high – 3.3V. Otherwise the

PIN_CON_WALLABY would stay on 0V. Based on

whether the pin has full voltage or not, this information

could be used with the main program on the wallaby using

the same system as with a toggle button or any other

sensor.

#define PIN_S0 2

#define PIN_S1 3

#define PIN_S2 4

#define PIN_S3 5

#define PIN_COLORSENSOR_OUT 6

#define PIN_CON_WALLABY 9

unsigned long red = 0;

unsigned long green = 0;

float redFreq = 0;

float greenFreq = 0;

void color(void);

void setup()

{

 pinMode(PIN_S0, OUTPUT);

 pinMode(PIN_S1, OUTPUT);

 pinMode(PIN_S2, OUTPUT);

 pinMode(PIN_S3, OUTPUT);

 pinMode(PIN_COLORSENSOR_OUT, INPUT);

 pinMode(PIN_CON_WALLABY, OUTPUT);

 // Setting frequency-scaling to 2%

 digitalWrite(PIN_S0, LOW);

 digitalWrite(PIN_S1, HIGH);

 Serial.begin(9600);

}

void color() //read values of Colorsensor

{

 //read red

 digitalWrite(PIN_S2, LOW);

 digitalWrite(PIN_S3, LOW);

 red = pulseIn(PIN_COLORSENSOR_OUT, HIGH)

+ pulseIn(PIN_COLORSENSOR_OUT, LOW);

//Period in us

 redFreq = 1000000 / float(red); //f=1/T Frequency

in Hz

 delay(50);

 //read green

 digitalWrite(PIN_S2, HIGH);

 digitalWrite(PIN_S3, HIGH);

 green = pulseIn(PIN_COLORSENSOR_OUT,

HIGH) + pulseIn(PIN_COLORSENSOR_OUT,

LOW); //Period in us

 greenFreq = 1000000 / float(green); //f=1/T

Frequency in Hz

 greenFreq = greenFreq / 0.7; //Correctionfaktor

according to datasheet p.7 is 0.7

 delay(50);

}

Figure 5: Code of color determination

Establishing the connection to the Wallaby:

These values could be used in the python program uploaded

on the wallaby. In order to do that, the pins must be

connected to the Wallaby. First, it had to be determined

where the pins had to be plugged in. This was done by using

a voltmeter. The bottom most pin on the Wallaby is ground,

in the middle is positive 3.3V and the pin closest to the

display is for the sensor input.

The ground pin of the Wallaby must be connected to the

ground pin of the ESP32. The signal pin of the Wallaby

needs to be connected to the PIN_CON_WALLABY of the

ESP32. The 3.3 Volt pin is not needed.

Finally, it could be seen if the program worked. This was

checked in the analog sensor list. After trying to plug the

pins into a digital sensor port it became obvious that this was

also possible. The difference to the analog sensor pin was,

that it did not read values from 0 to 3.3 V but 0 and 1. This

ended up being easier to use in the already existing program.

Additionally, a way of supplying the ESP32 and the sensor

with power had to be found. But after a short time of

experimentation, the USB port of the Wallaby seemed

viable. Therefore, the same cable that was used to upload

the program to the sensor could also be the power connector.

Using the sensor to sort the poms:

After that the sensor had to be installed in a proper way to

read out the color of the pom properly and quickly for the

following slider, which lets the poms through in only one

direction – to the red or green container, to move in time and

let the pom fall into the right container. Therefore, the

needed position of the sensor had to be figured out. Another

problem was reading out one pom at a time, which was

solved, by squeezing the poms into the conveyor resulting

into a proper upwards movement and only one at a time

having space in the small area in between.

Connecting the Servo:

Using the servo with the Wallaby resulted in a problem, due

to the color sensor and the servo having to work

independently from the main code. The following

experimentation connecting the Servo directly to the ESP32

caused several problems. Connecting the servo directly to

the ESP32 did not work and it was not clear why. This led

to several experiments using different controllers, like a

mini-Arduino and lastly the Arduino MEGA. Several

measurements showed that the output frequency and the

voltage were correct on the pins that were used to control

the servo. However, after connecting the servo, the program

crashed, and the servo did not move. After measuring the

Voltage during the servo being plugged in, it showed that

the Voltage dropped several times. This was because of the

servo, which when plugged in uses about 200 mA, which

results into the Arduino not getting enough current and

shutting down. It turned out that there needed to be an

additional power supply connected to the servo. For this, it

is possible to use the Wallaby as a power supply. The Signal

cable is connected to the Arduino MEGA, as well as the

ground. The 5V cable and the ground is connected to the

Wallaby. Therefore, the power supply of the servo is

completely separate to the Arduino Mega and does not use

the power of the Arduino.

Figure 6: Cable plan of servo connection

Serial.print("R= ");

 Serial.print(redFreq);//printing RED color

frequency

 Serial.print(" ");

 Serial.print("G= ");

 Serial.print(greenFreq);//printing GREEN color

frequency

 Serial.print(" ");

 if (redFreq / greenFreq > 0.8 && redFreq /

greenFreq < 1.2) {

 Serial.print("too similar");

 }

 else if (redFreq > greenFreq)

 {

 delay(250);

 Serial.print("Red detected");

 digitalWrite(PIN_CON_WALLABY, HIGH);

 }

 else if (greenFreq > redFreq)

 {

 delay(250);

 Serial.print("Green detected");

 digitalWrite(PIN_CON_WALLABY, LOW);

 }

 Serial.println();

 //delay(2000);

Advantages of running the program for the color sensor

separately:

 the sorting system does not impact the main

program in its fluidity

 improvements to the connection between the color

sensor and the servo can be done quickly because

of it being in the same program

Disadvantages of running the program for the color sensor

separately:

 having separate programs for different things can

cause a mess

 the programs use different programming

languages which can lead to maintenance

problems

The Sorting Program:

To control a servo with the Arduino it is required to install

the Servo library under Tools – Manage Library – search

Servo. This is built-in by Arduino and allows Arduino

boards to control a variety of servo motors. Therefore, the

program needed to be modified.

Including the library was done with the #include <Servo.h>

function. Then you need to define the pin to which you

connect the signal cable of the servo. After that, an object

named servoMotor is created of the type Servo by writing

“Servo servoMotor;”.

Figure 7: Code of Pindefinitions and Libraryimplementation

This object is now linked to the pin that was assigned

earlier using servomotor.attach(PIN_CON_WALLABY);

Figure 8: Code of setup

After that the servo could be controlled using

servoMotor.write(value). The value is possible in the range

from 0 to 180 and its unit is degrees. This function was used

to turn the Servo in between a 90-degree angle in order to

sort the poms. When the Servo is at 70 degree the red poms

fall through the right whole. When the Servo is at 160

degree the green poms fall through the left whole. Because

of this system, the differently colored poms can be sorted.

The code for the pom separation:

At first the program reads out the values for the color

frequencies twice in order to minimize wrongly read values.

After that the average is calculated.

Figure 9: Code of refinement of color determination

Then the program determines whether the values are too

similar – when the quotient of the red and green frequency

is in a range between 0.8 and 1.2 – and does not move the

servo. If the red frequency is higher than the green, the servo

turns to a 70-degree angle. If the green frequency is higher

the servo turns to a 160-degree angle. The delays are needed

for the time between the pom getting recognized and the

pom before falling down the transporter and reaching the

servo where the poms are separated.

#include <Servo.h>

#define PIN_S0 2

#define PIN_S1 3

#define PIN_S2 4

#define PIN_S3 5

#define PIN_COLORSENSOR_OUT 6

#define PIN_CON_WALLABY 9

#define PIN_LIGHTSENSOR A0

Servo servoMotor;

void setup()

{

pinMode(PIN_S0, OUTPUT);

pinMode(PIN_S1, OUTPUT);

pinMode(PIN_S2, OUTPUT);

pinMode(PIN_S3, OUTPUT);

pinMode(PIN_COLORSENSOR_OUT, INPUT);

pinMode(PIN_CON_WALLABY, OUTPUT);

servoMotor.attach(PIN_CON_WALLABY);

// Setting frequency-scaling to 2%

digitalWrite(PIN_S0, LOW);

digitalWrite(PIN_S1, HIGH);

pinMode(PIN_LIGHTSENSOR, INPUT);

Serial.begin(9600);

}

color();

int redFreq1 = redFreq;

int greenFreq1 = greenFreq;

color();

int redFreq2 = redFreq;

int greenFreq2 = greenFreq;

redFreq = (redFreq1 + redFreq2) / 2;

greenFreq = (greenFreq1 + greenFreq2) / 2;

Figure 10: Code of color determination

IV. RESULTS

Several problems concerning the sorting system and color

recognition were identified. From the beginning it was

obvious that a sensor was needed, someone without much

experience in this area might not know that an IR light

sensor is not an ideal choice for a color sensor. Although

they are not recognizing the difference between green and

red, they do work well for black and white. For that specific

reason, the XHT 3085/3 uses it in the line following system.

Some experimentations concluded, that a TCS3200 would

be a much better choice for color detection.

As a matter of fact, the TCS3200 also was not perfect. The

first reason was identifying the colors fast enough. A very

difficult situation that took quite some time to solve was to

recognize the colors correctly. One of the reasons it took so

long was a wrong value in the informational table. In order

to solve it multiple values needed to be tried out to find the

correct one.

After finally solving that, options to connect the sensor to

the Wallaby had to be thought through, since it did not have

a proprietary connector. The sorting system that was

planned did not have enough space for the new sensor.

Therefore, the entire system had to be redesigned to include

the replacement.

Lastly the servo needed to be connected, which turned out

more difficult than expected, because of the missing

knowledge that a servo needs an additional power source.

By branching off the ground cable and the 5V cable and

connecting them to the Wallaby the problem was solved and

the sorting could begin.

V. ACKNOWLEDGMENT

This outcome would not have been possible without our

teacher and organizer Johannes Tomitsch. He made the

participation on the ECER possible and helped us with some

advice for the color sensor TCS3200. Special regards to the

HTL St. Pölten for letting us use the laboratory room.

VI. LITERATURVERZEICHNIS

[1] C. f. Recycling. [Online]. Available:

https://recyclingpartnership.org/communitiesforrecy

cling/recycling-how-it-works/. [Zugriff am 02 04

2022].

[2] KIPR, „Botball IR (TopHat) Sensor,“ [Online].

Available: https://botball-

swag.myshopify.com/collections/sensors/products/l

g-ir-top-hat-sensor. [Zugriff am 02 04 2022].

[3] M. Integrated, „Definition for Light Sensor,“

[Online]. Available:

https://www.maximintegrated.com/en/glossary/defi

nitions.mvp/term/Light%20Sensor/gpk/1221#:~:tex

t=Light%20sensors%20are%20a%20type,or%20co

nvert%20light%20to%20electricity. [Zugriff am 02

04 2022].

[4] Keyence, „What is a Color sensor?,“ [Online].

Available:

https://www.keyence.com/ss/products/sensor/sensor

basics/color/info/. [Zugriff am 02 04 2022].

[5] WatElectronics, „What is Color Sensor,“ [Online].

Available: https://www.watelectronics.com/what-is-

color-sensor-working-its-applications/. [Zugriff am

02 04 2022].

[6] E. 360, „Color Sensors Information,“ [Online].

Available:

https://www.globalspec.com/learnmore/sensors_tra

nsducers_detectors/vision_sensing/color_sensors.

[Zugriff am 02 04 2022].

[7] Distrelec, „TCS34725,“ [Online]. Available:

https://www.distrelec.at/de/rgb-farbsensor-

tcs34725-5v-adafruit-1334/p/30091138. [Zugriff am

02 04 2022].

[8] AZ-delivery, „TCS3200,“ [Online]. Available:

https://cdn.shopify.com/s/files/1/1509/1638/files/Fa

rbsensor_Datenblatt.pdf?13859665781781208664.

[Zugriff am 02 04 2022].

if (redFreq / greenFreq > 0.8 && redFreq / greenFreq

< 1.2)

{

 Serial.print("too similar");

}

else if (redFreq > greenFreq)

{

 delay(250);

 Serial.print("red recognized");

digitalWrite(PIN_CON_WALLABY,

HIGH);

 servoMotor.write(70);

}

else if (greenFreq > redFreq)

{

 delay(250);

 Serial.print("green recognized");

digitalWrite(PIN_CON_WALLABY,

LOW);

 servoMotor.write(160);

}

