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Abstract—Accurate robot localization is essential for au-
tonomous navigation, especially in resource-constrained environ-
ments like the Botball competition. This paper presents a vision-
based localization system using a USB camera and a lightweight
convolutional neural network (CNN) to estimate the robot’s
position and orientation in real-time. A dataset was collected
using synchronized onboard and overhead cameras with ArUco
markers for ground-truth labeling. The optimized model runs
efficiently on a Raspberry Pi 3 Model B+, achieving an average
inference time of 0.0773 seconds per frame with some accuracy
loss after INT8 quantization. While real-time performance was
achieved, accuracy limitations may restrict direct competition
usage without further refinement.

Index Terms—Vision-Based Localization, Visual Odometry,
Pose Estimation, USB Camera, Raspberry Pi, Botball

I. INTRODUCTION

Accurate robot localization is vital for autonomous navi-
gation and interaction within a defined environment. In the
Botball competition, traditional methods like LiDAR and GPS
are either unavailable or impractical, making vision-based
localization a compelling alternative [1], [2]. By using a USB
camera, robots can capture environmental images and estimate
their position and orientation through visual data processing
[3].

This paper presents a real-time vision-based localization
system using a lightweight convolutional neural network
(CNN) to predict the robot’s pose (z,y,6) on the Botball
table. The approach focuses on achieving high accuracy and
efficiency on resource-constrained hardware, such as the Rasp-
berry Pi 3 Model B+ [4]. Unlike prior classification-based
methods [5], this work targets continuous pose regression,
enabling more precise navigation. The system is trained on
a dataset collected through synchronized camera feeds with
ArUco marker-based ground-truth labeling and is validated
under varying lighting conditions to ensure robustness.

The primary goal is to demonstrate how a cost-effective,
camera-based solution can achieve reliable localization in real-
time despite hardware and competition constraints.

II. STATE OF THE ART

A. Overview of Robot Localization

Robot localization is a fundamental challenge in au-
tonomous robotics, as it enables precise navigation and task
execution. Various methods have been developed, each with
distinct advantages and limitations:

o LiDAR: Provides highly accurate distance measurements
but is costly, computationally intensive, and not included
in the Botball kit.

e GPS: Performs well outdoors but lacks the precision
required for indoor environments and is prohibited in
Botball competitions [2].

o Wheel Odometry: Estimates movement through encoder
readings (or, in the case of Botball, motor tick estimation
via back-EMF) [3].

o IMU (Accelerometer & Gyroscope): Estimates position
and orientation by integrating acceleration and rotational
data. However, due to sensor noise and drift, errors
can accumulate over time, making standalone IMU-based
localization less reliable.

Given these limitations, vision-based localization has
emerged as a promising alternative. By leveraging cameras
to capture environmental features, it is possible to estimate
the robot’s position relative to known landmarks [4].

B. Vision-Based Localization Approaches

Traditional feature-based localization methods depend on
detecting visual cues such as edges and corners [10]. However,
the Botball playing field poses challenges due to the scarcity
of distinct landmarks. While tracking elements like black lines
or PVC pipes is possible, the camera may capture featureless
sections of the FRP plate, resulting in unreliable localization.
This issue is compounded by the presence of non-static game
pieces.

To address these challenges, neural network-based ap-
proaches offer greater robustness. Deep learning models, when
trained on diverse datasets, can develop representations that are
more resistant to variations in lighting and texture. Farisi et
al. demonstrated that a convolutional neural network (CNN)
achieved 94.7% accuracy in cluttered indoor environments,
surpassing the performance of traditional feature-based meth-
ods [5].

To highlight the differences between feature-based and neu-
ral network-based localization methods, Table I compares their
robustness, computational cost, accuracy, and adaptability.

C. Real-Time Processing for Embedded Systems

Real-time processing is crucial for effective robot naviga-
tion, as solutions that process images after a competition do
not provide actionable information during gameplay. The robot



TABLE I
COMPARISON OF FEATURE-BASED AND NEURAL NETWORK-BASED
LOCALIZATION

Aspect Feature-Based Neural Network-
Based
Robustness Sensitive to noise [11] Robust [5]
Computational Cost | Low [12] High [5]
Accuracy Limited in low-feature | High [14]
areas [11]
Adaptability Manual tuning [12] Self-learning [5]

must continuously update its position to adapt to a dynamic
environment, requiring efficient visual data processing.

This requirement is challenging due to the limited compu-
tational resources of the Botball kit. The Wombat Controller,
featuring an STM32F4 microcontroller, is primarily designed
for motor control and sensor input, lacking the processing
power required for complex image analysis [6]. While the at-
tached Raspberry Pi 3 Model B+ offers improved capabilities,
it still falls short compared to modern GPUs and specialized
edge computing devices [7].

Previous research indicates that achieving real-time image
processing on embedded platforms like the Raspberry Pi 3
is demanding. Deep learning models, such as CNNs, often
struggle with real-time inference unless optimized through
techniques like quantization or hardware acceleration [8], [13].
Furthermore, frame rate limitations can introduce latency, re-
ducing navigation accuracy [9]. Overcoming these constraints
remains a significant challenge in the development of real-time
localization systems for embedded robotics platforms.

III. CONCEPT

This paper introduces a vision-based localization system
designed for robots competing in the Botball competition. The
system uses a USB camera and a lightweight deep learning
model to determine the robot’s position. The process is divided
into two main parts: collecting a dataset and training the
model.

A. Camera Placement

Placing the camera correctly is crucial for accurate local-
ization. The camera should be mounted securely and consis-
tently to prevent shifts that can lead to errors. Its placement
should give a clear view of important visual markers in the
environment while avoiding obstacles that might block the
view. Proper positioning helps the system detect features more
reliably and improve overall accuracy.

B. Dataset Collection

To train the model, we need images paired with the robot’s
exact position. This is done using an ArUco marker system:

o Attach an ArUco marker to the robot so it can be easily
tracked.

o Use a stationary camera to follow the marker and record
the robot’s movements.

o Collect images from the robot’s perspective, ensuring
each image is labeled with its position and orientation.

It is important to gather a dataset that includes a variety
of conditions, like different lighting or backgrounds, to make
the model adaptable to real-world environments. Distractions
like moving objects can be included to improve the model’s
robustness, at the cost of increased complexity.

C. Model Training

The collected images are used to train a compact convo-
lutional neural network (CNN), which is suitable for running
on limited hardware like the Wombat controller. The training
process includes:

o Preparing the data by cleaning and normalizing the im-

ages to reduce noise.

e Using data augmentation techniques (e.g., adjusting

brightness) to make the model more resilient.

o Training the model with optimization methods to improve

accuracy.

o Testing the model to ensure it performs well on new,

unseen images.

To make the model usable on the Wombat controller, it is
compressed using INT8 quantization. This reduces the model’s
size and computation requirements, allowing it to run in real-
time without overloading the hardware.

D. Concept Conclusions

This system provides a practical solution for locating robots
in real-time during Botball matches using common hardware
components. By carefully placing the camera, collecting a
well-rounded dataset, and optimizing the model, the robot
can reliably determine its position even with the hardware
limitations present in the competition.

IV. IMPLEMENTATION
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Fig. 1. Overview of the vision-based localization pipeline, illustrating the
sequential steps from dataset processing to model training and deployment.

The system architecture consists of three primary stages:
dataset collection, model training, and deployment (Fig-
ure 1). Data is collected from two cameras: one onboard
the robot for environmental perception and another overhead



tracking the robot’s position via an ArUco marker. Images are
synchronized and preprocessed to prepare for model training.

A compact CNN predicts the robot’s position (x, y) and ori-
entation () from grayscale images. The network is optimized
for deployment on resource-constrained devices, ensuring ef-
ficient real-time inference without sacrificing accuracy.

The final stage involves deploying the trained model onto
embedded hardware for real-time robot pose estimation.

A. Data Acquisition

Data acquisition ensures high-quality input for pose estima-
tion. The setup employs a Logitech C170 USB camera on the
robot and a White Botball camera (2016 model) overhead. The
onboard camera captures the robot’s perspective (Figure 2),
while the overhead camera tracks the ArUco marker for
position and orientation.

Fig. 2. Robot equipped with a USB camera for environmental perception and
an ArUco marker for precise localization. The front-mounted bumper aids in
obstacle detection.

To explore the Botball table, the robot follows a cleaning
pattern: moving forward until detecting an obstacle, reversing,
rotating randomly, and continuing. This approach ensures
table coverage without complex path planning but occasionally
causes the robot to become stuck due to bumper malfunctions
or boundary irregularities.

The overhead camera exhibited skew due to lens distortion
and installation misalignment, reducing positional accuracy. A
homography transformation using four corner ArUco markers
mitigated this issue. Although full calibration was possible,
time constraints favored this faster solution.

Images were captured at 160x120 pixels at five frames per
second, balancing computational efficiency and detail. Raw
data initially showed density variations, with clustered points
from navigational behavior and obstacles. To prevent model
overfitting, points exceeding a density threshold were removed,
reducing the dataset from 12,612 to 9,351 image-pose pairs
(Figure 3).

Preprocessing included median-normalizing position val-
ues (x,y,0) to mitigate outliers and converting images to
grayscale to reduce complexity. Data augmentation techniques
such as brightness variation and motion blur were applied to
improve model robustness, a method commonly used in real-
world applications [18].
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Fig. 3. Density heatmap comparison of localization data before (left) and after
cleaning (right). Data balancing reduces overrepresented points, improving
model training.

B. Model Training

A CNN is used to predict the robot’s pose (x,y,6) from
grayscale images. CNNs are designed to process image data
by detecting patterns such as edges, shapes, and textures,
making them well-suited for vision-based localization tasks.
The dataset was split into training and validation sets. The
CNN uses three separable convolutional layers with ReLU
activations, max-pooling, and batch normalization, followed
by Global Average Pooling (GAP) and a dense regression head
(Figure 4). Hyperparameters were selected via a hyperband
search.
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Fig. 4. CNN architecture for pose estimation, featuring separable convolu-
tions, batch normalization, pooling layers, and a dense regression head for
predicting (X, y, ).

With approximately 22,700 parameters, the model remains
under 100 KB, enabling embedded deployment without accu-
racy loss. Training used the Adam optimizer with an initial
learning rate of 0.01, adjusted via a CosineDecayRestarts
schedule to improve convergence. Huber loss, chosen for its
balance between sensitivity and outlier robustness, outper-
formed MSE and MAE in regression accuracy.



Experiments were conducted on an NVIDIA GeForce GTX
3060 Ti Laptop GPU using TensorFlow and Keras, with
training progress monitored via TensorBoard.

Training ran for up to 1000 epochs with early stopping
based on validation loss. Optimal performance was reached at
epoch 105, achieving a validation loss of 0.03519. As shown
in Figure 5, the model converged within 50 epochs, with the
validation loss plateauing thereafter.
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Fig. 5. Training and validation loss over epochs, showing model convergence
with steady improvement and minimal overfitting.

V. RESULTS

This section presents the evaluation results of the vision-
based localization system. The analysis includes error dis-
tribution assessments, kernel density estimation (KDE) visu-
alizations, a comparison between predicted and actual robot
positions, and an evaluation of inference results on the Rasp-
berry Pi after quantization. Three figures illustrate the system’s
localization accuracy and error patterns.

A. Error Distribution Analysis
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Fig. 6. Error distribution for x, y, and predictions, showing a centered
distribution with minimal bias and higher variance in x due to a larger
positional range.

Figure 6 shows the histograms and KDE plots of the
localization errors in x-position, y-position, and orientation

(theta). The distributions are centered around zero, indicating
unbiased predictions. However, the x-error shows a wider
spread due to the larger range of x-values (0—650) compared to
y (0-250) and theta (0-360°). This broader spread reflects the
higher variability in horizontal localization. The theta error has
a sharp peak, highlighting more precise orientation predictions.

B. KDE of Error Distribution
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Fig. 7. KDE heatmap of localization errors, highlighting regions with higher
prediction inaccuracies, particularly in visually cluttered areas.

Figure 7 displays a KDE heatmap of localization errors
overlaid on the Botball table. Warmer colors represent regions
with higher error concentrations, most notably in the upper-
left area. This pattern likely results from visual clutter or a
biased dataset distribution. Conversely, the center and lower-
right areas show lower error densities, indicating improved
model accuracy in those regions.

C. Predicted vs. Actual Positions

Predictions vs Actuals - Epoch 102

@ Predicted

1 @ Actual
= r; B
i

100

Y Position
=
G
S

|‘,'

N
&
)

<]
e

350 1

o 100 200 300 400 500
X Position

Fig. 8. Comparison of predicted (red) and actual (blue) robot poses, with
green arrows indicating orientation. Dashed lines highlight discrepancies,
mainly occurring in visually complex areas.



Figure 8 compares predicted and actual robot positions.
Red markers show predicted positions, blue markers indicate
ground-truth positions, and green arrows represent orienta-
tion. Dashed lines connect corresponding predicted and actual
points, revealing positional errors. Most predictions closely
match actual positions, though larger discrepancies appear
in the upper-left quadrant, aligning with the KDE findings.
While orientation estimates are often aligned, several instances
- particularly in visually complex regions - show deviations
exceeding 90°, highlighting areas for improvement. Future
work should address discontinuities near the 0°/360° boundary
by using a custom loss function that accounts for angular
periodicity.

D. Inference Results on Raspberry Pi

To deploy the trained model on the pi, the model has to
be quantized, a technique that reduces the precision of model
parameters (e.g., converting 32-bit floating-point numbers to
8-bit integers). This significantly decreases memory usage and
improves inference speed while introducing a slight accuracy
trade-off. To assess the feasibility of deploying the model on
an embedded system, inference tests were conducted on a
Raspberry Pi using an INT8 quantized version of the model.
For quantization, tensorflow lite has been used. Quantization
reduced the model size and improved inference speed, albeit
with a slight reduction in prediction accuracy.

The original, full-precision model achieved a Root Mean
Squared Error (RMSE) of 64.81. After applying INT8 quanti-
zation, the RMSE increased to 74.31, an increment by 14.6%,
indicating a modest drop in accuracy. However, the quantized
model significantly improved inference speed, averaging just
0.0773 seconds per inference on the Raspberry Pi. Given this
speed, it is possible to achieve a real-time performance with
around 10 frames per second.

These results highlight the trade-off between accuracy and
speed. While quantization introduces some performance degra-
dation, the reduced inference time is crucial for real-time
applications, making the INT8 quantized model a practical
solution for embedded deployment scenarios where computa-
tional resources are limited.

VI. CONCLUSIONS AND FURTHER WORK

This work establishes a baseline for real-time vision-based
robot localization using a lightweight CNN on resource-
constrained hardware. The system achieves real-time pose
estimation with an inference time of 0.0773 seconds per
frame on a Raspberry Pi 3 Model B+, demonstrating that
optimized neural networks can provide reliable localization
despite limited computational resources. The results confirm
the practicality of deep learning-based localization in compet-
itive robotics environments like Botball.

Despite these achievements, accuracy improvements re-
main necessary for full competition readiness, particularly
in orientation estimation and edge-case angle scenarios. Two
promising directions for future work include sensor fusion and
temporal models.

A. Sensor Fusion

Combining vision with sensors like gyroscopes improves
robustness. Providing the robot’s orientation (f) and focusing
on position (z,y) simplifies learning. Training the model to
predict uncertainty allows better integration with filters like
the Kalman filter, enhancing accuracy and handling visual
occlusions.

B. Temporal Models

Using sequential images improves motion consistency.
Lightweight models, such as ConvLSTMs or temporal trans-
formers, capture movement patterns efficiently. Extracting
features from consecutive frames reduces computation, while
integrating temporal data with SLAM yields smoother local-
ization.
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