
Enhancing the Wombat: A Cost-Effective
RaspberryPi5 Upgrade and Firmware Extensions for

the Botball Controller
Tobias Madlberger1, Leander Klik, Matthias Greil

HTL St. Pölten, Austria
1Corresponding author: tobias.madlberger@gmail.com

Abstract—The Wombat robotics controller, based on the Rasp-
berry Pi 3B+, has been the foundation of Botball’s embedded
platform since 2020. However, rising demands for real-time
computer vision have begun to outpace its capabilities. We
present a low-cost, minimally invasive upgrade to the Raspberry
Pi 5, paired with firmware extensions that expand functionality
and performance. Our approach delivers a 5–13× reduction
in inference latency across common CNN workloads, increased
performance of the motors and introduces software-controlled
servo shutdown. The hardware swap retains compatibility with
existing extension boards, costs under $50 net, and is feasible for
mass adoption by the 2026 season. Rather than widening the gap,
this upgrade democratizes advanced vision pipelines and makes
real-time perception accessible to all Botball teams.

Index Terms—Botball, Wombat Controller, Raspberry Pi 5,
Motor PWM, Servo Disable, Embedded Robotics

I. INTRODUCTION

The Wombat platform successfully abstracts sensors, actu-
ators, and vision into a student-friendly package [1], [18].
Nevertheless, challenges such as 1-minute boot times and
CPU-bound TensorFlow Lite pipelines increasingly limit com-
petitive teams. Rather than designing a new controller from
scratch, we explore whether the Raspberry Pi5 released in late
2023 can be retrofitted with minimal hardware churn while
unlocking contemporary performance [2].

Our contribution is three-fold:

1) A drop-in hardware swap requiring a $7 Micro-HDMI
dongle.

2) Firmware updates that (i) improve the motor perfor-
mance and (ii) introduce a way to disable servos fully.

II. SYSTEM OVERVIEW

A. Hardware Swap: RaspberryPi5

The Pi5 brings a 2.4GHz Cortex-A76 quad-core SoC and up
to 8GB LPDDR4X RAM, delivering roughly triple the SPEC
int score of the 3B+ [3]. Crucially, the 40-pin GPIO header
is electrically identical [4], ensuring compatibility with the
Wombat’s extension board. Physical differences are limited to
dual Micro-HDMI connectors and deeper USB sockets (8mm
overhang), neither of which interferes with the stock plastic
enclosure.

B. Alternative Low-Cost Vision Controllers

While the Raspberry Pi 5 represents a balanced upgrade
path for Wombat, two other budget-oriented AI boards are
commonly pitched to K–12 robotics teams:

• OpenMV Cam H7: $65 microcontroller board (480
MHz Cortex-M7, 256KB RAM). Draws 110mA idle and
manages ∼0.6 FPS on a YOLO demo, making it great
for line following but too slow for real-time CNN work.
[12]–[14]

• NVIDIA Jetson Nano (4GB): $99 launch MSRP (often
$150+ in 2025) with a 128-core Maxwell GPU (roughly
0.5 TFLOPS FP16). Runs YOLOv5s at 6–14 FPS but
needs an active cooler and 5–10W power budget. [15]–
[17]

TABLE I
COST/PERFORMANCE SNAPSHOT (JUNE 2025)

Board Street Price YOLOv5s FPS $ per FPS

OpenMV H7 $65 0.6 $108
Jetson Nano $149 11 $13.5
Pi 5 (Wombat) $47* 4.1 $11.5

*Net incremental cost after reselling the retired Pi 3B+.
Table I shows that the Pi 5 retrofit matches the Jetson Nano

in $-per-FPS efficiency within a $2 margin, while offering full
pin compatibility with the Wombat stack and consuming half
the power. The OpenMV Cam, being an order of magnitude
less capable for vision tasks, is better suited as a sensor-node
companion rather than a standalone controller.

Takeaway: swapping to Pi 5 keeps total system cost low,
matches Nano-class efficiency, and avoids the BOM bloat of
a discrete carrier board.
The replacement process is straightforward: open the case,
unplug the existing HDMI adapter, and gently remove the
Raspberry Pi 3B+ from the GPIO header. As with any elec-
tronics handling, care should be taken to avoid static discharge
and to prevent bending GPIO pins during insertion. Then,
insert the Raspberry Pi 5, connect the new Micro-HDMI
adapter, and the upgrade is complete.

C. Firmware Extensions

Motor-Driver Duty-Cycle Fix reduces a 1 ms dead-band
that forced a maximum duty cycle of 75%. Shortening the
back-EMF sampling window to 104µs mirrors best practices
in high-fidelity DC drives [5].

Servo Shutoff in Software The Wombat hardware provides
the possibilities to shutoff (not only disable) the servos, which
isn’t accessible for teams to use in software. This feature can
provide more flexibility in certain situations like the setup of
robots.

III. COST AND FEASIBILITY

TABLE II
INCREMENTAL BILL OF MATERIALS (MAY 2025)

Component Qty Unit Cost (USD) Sub-Total (USD)
Raspberry Pi 5 (4 GB) 1 60 60
Micro-HDMI Adapter 1 7 7
Total 67
Credit: Retired Pi 3B+ –20 to –30
Net Increment 37–47

Looking at Table II, the hardware upgrade requires a rela-
tively minor investment. The most expensive component is the
Raspberry Pi 5 itself, priced at $60. Minor accessories such
the Micro-HDMI adapter bring the total to approximately $67.

However, one can potentially offset the cost by repurposing
or reselling the now-retired Raspberry Pi 3B+, reducing the
net upgrade cost to around $39–$49. 1

IV. BENCHMARK RESULTS

Fig. 1. Inference Latency Comparison of CNN Models on Raspberry Pi 3B+
vs Pi 5.

The benchmarking results clearly demonstrate a dramatic
performance uplift with the Raspberry Pi 5 as it can be seen
in Table III and Figure 1. All metrics were averaged over
100 inference runs per task using the 4GB model of the Pi
5. The device was mounted inside the Wombat enclosure as
described, with an additional CPU fan installed. No thermal
throttling or power-saving modes were observed throughout

1Estimated resale value based on typical secondhand pricing on electronics
marketplaces.

TABLE III
PERFORMANCE METRICS ACROSS VISION TASKS ON RASPBERRY PI 3B+

AND PI 5.

Metric Yolov5n ArucoTags VO (PyrLK) Midas FastSeg

Raspberry Pi 5

Avg (ms) 241.45 21.18 23.44 271.09 595.27
Min (ms) 233.14 20.75 23.38 270.06 590.02
Max (ms) 266.28 21.67 23.53 271.75 599.23
FPS 4.14 47.21 42.66 3.68 1.68

Raspberry Pi 3B+

Avg (ms) 1201.24 72.40 155.59 1484.48 1919.29
Min (ms) 1161.91 72.04 155.12 1380.85 1891.69
Max (ms) 1425.45 73.28 157.16 1942.43 2158.21
FPS 0.83 13.81 6.43 0.67 0.52

X-Factor 5.0 3.4 6.6 5.5 3.2

the tests. Across all tasks, inference times were significantly
reduced. Most notably:

• YOLOv5n: Average latency dropped from 1201ms to
241ms (5× improvement).

• Visual Odometry (PyrLK): From 156ms to just 23ms,
enabling real-time motion tracking.

• Midas Depth Estimation: Previously impractical at 1.5s,
now down to 271ms.

These improvements translate into real FPS gains (e.g.,
April tag detection now runs at 47Hz), enabling reliable
perception pipelines on embedded platforms.

These benchmarks have been achieved with minimal effort
and limited optimization, relying solely on standard usage
patterns provided by existing inference frameworks - primar-
ily ONNX Runtime for PyTorch - exported models (e.g.,
YOLOv5n, FastSeg) and TensorFlow Lite for pre-trained
models like Midas. For AprilTag detection OpenCV contrib
has been used. As such, there remains substantial room for
performance improvement, especially for tasks with higher
compute demands or non-optimized pipelines.

V. MOTOR DRIVER ANALYSIS

A. What is BEMF and how is it measured on the Wombat

Back ElectroMotive Force (BEMF) is the voltage generated
by a motor as it spins. This self-induced voltage is a direct
result of the motor’s rotation and can be used to estimate
the motor’s speed [5]. On the Wombat platform, BEMF is
sampled to enable sensorless feedback for closed-loop control.
Each motor has a dedicated passive resistor-capacitor network
that taps into the motor terminals (MOTxA and MOTxB)
and attenuates the signal for safe measurement. This network,
shown in Fig. 2, feeds the differential signal into two analog
channels of the STM32 coprocessor. A capacitor between the
differential lines provides basic low-pass filtering to reduce
switching noise from PWM signals.

This circuit is downstream from the Wombat’s 6V battery
supply voltage, which supplies power to the motors. It’s

Fig. 2. Motor BEMF sensing circuit

important to note that while the motors are driven from the 6V
batteries, the BEMF taps only monitor passive voltages and
do not interfere with the drive circuitry.

B. Analysis of KIPR’s Implementation

The BEMF measurement and interpretation are performed
entirely by the STM32F427 coprocessor. The built-in ADCs
sample the attenuated BEMF signals at regular intervals. These
raw readings are filtered digitally via a low-pass filter to
smooth out PWM-related artifacts. The resulting filtered signal
is accumulated over time to produce a value proportional
to the motor’s relative rotation. This accumulated value is
periodically sent to the Raspberry Pi via SPI.

In Libwallaby, this value is exposed as motor ticks. Inter-
nally, the accumulated BEMF sum is scaled by a predefined
factor to approximate encoder ticks. Oscilloscope traces show
that new BEMF measurements are taken approximately every
3.6ms.

Fig. 3. Measurement: motor voltage at 50% duty cycle

In the Wombat firmware [10], which runs on the coproces-
sor, BEMF measurements are performed every fourth iteration
of the main control loop. Each iteration of this loop takes
approximately 900µs to execute, resulting in a maximum
effective motor ”on time” of roughly 75%.

Ideally, the dead-band - during which no PWM is applied
to the motor - would only need to last as long as the
ADC sampling time. However, due to the motor’s inductance,

turning off the motor causes a brief negative voltage spike. To
avoid corrupting the measurement, a delay must be inserted
after disabling the motor before sampling the BEMF voltage.

Fig. 4. Measurement: negative voltage spice at the start of BEMF

From figure 5 it can be seen that it takes approximately
80µs before the voltage has stabilized. It should also be noted
that the duration of the voltage spike varies slightly by every
measurement. The voltage is stable consistently after 80µs.

C. Improved Solution for Optimal Performance

Fig. 5. flowchart - optimized BEMF Implementation

To optimize the BEMF measurement process and reduce
CPU load, the new implementation offloads as much work as
possible to asynchronous hardware components. Specifically,
one of the two DMA controllers on the Coprocessor is now
used to handle ADC sampling.

The CPU only initiates the ADC conversion; once the
sampling is complete, a DMA interrupt is triggered. This
allows the CPU to remain free for other tasks during the
sampling period.

When integrating this new implementation into the Wombat-
Firmware [10], most of the existing structure can be retained.
As in the previous version, BEMF measurement is initiated
every fourth iteration of the main-loop. The key difference

is that the ADC sampling now occurs asynchronously, and
both the processing of the data and re-enabling of the motors
are performed in the DMA callback.

A more optimized variant of this approach uses a hardware
timer to periodically initiate BEMF measurements. This ver-
sion was used for the performance measurements described
below. Instead of blocking the CPU with a manual delay
after turning off the motors, the timer is configured to provide
precise microsecond-level timing.

Every 4ms, the motors are disabled. After a delay of 80µs -
which allows voltage transients to settle - the ADC conversion
is triggered.

1 #define BEMF_SAMPLING_INTERVAL 4000 // mu s
2 #define BEMF_CONVERSION_START_DELAY_TIME 80 //

mu s
3

4 void HAL_TIM_PeriodElapsedCallback(
TIM_HandleTypeDef *htim)

5 {
6 // Timer 6 triggers this callback every

microsecond
7 if (htim->Instance == TIM6)
8 {
9 microSeconds++;

10

11 static uint32_t bemfLastStart = 0;
12 doEveryXuSeconds(&stopMotors(),

BEMF_SAMPLING_INTERVAL,
bemfLastStart);

13 doAfterXuSeconds(&
startBEMFadcConversion(),
BEMF_CONVERSION_START_DELAY_TIME,
bemfLastStart);

14 }
15 }
16

17 // Called by interrupt when ADC2 conversion is
complete

18 void HAL_ADC_ConvCpltCallback(
ADC_HandleTypeDef* hadc)

19 {
20 if (hadc->Instance == ADC2)
21 {
22 update_motor_cmd();
23 processBEMF();
24 }
25 }

Listing 1. Improved BEMF measurement using DMA and timer callbacks

D. Measurement with the new BEMF measurement

When comparing the measurements of the optimized ver-
sion in figure 6 and figure 7 with the legacy version in figure 3
a 770µs decrease of the dead-band can be seen. This equals
a reduction of approximately 88%.

E. Performance Comparison

To evaluate the impact of the improved BEMF measure-
ment routine, a performance benchmark was conducted using
identical hardware and power conditions. The time required
for one full motor rotation was measured for both the legacy
and updated firmware implementations:

Fig. 6. Measurement: optimized implementation - motor voltage at 50% duty
cycle

Fig. 7. Measurement: BEMF measurement cycle with optimized implemen-
tation

• Legacy Implementation: 1.14s per full rotation
• Optimized Implementation: 1.04s per full rotation
This corresponds to an 8.9% improvement in rotational

speed. Over continuous operation, this optimization translates
into approximately 11s of time savings per 120s of active
movement - a significant gain within the constraints of Bot-
ball’s competition rules.

The enhanced performance is primarily due to reduced dead
time in the motor control loop, achieved by refining the timing
of high-impedance phases and optimizing the BEMF sampling
window.

VI. SERVO MODE

Servos in the Wombat ecosystem can be disabled from
moving, but still stop external forces form changing the servo
position. In most cases this is wanted, but in come cases like
in the setup this can be cumbersome.

Wombats have the hardware to disable the voltage supply
of the servos, this allows the free movement of it. The 6V
Regulator located on the Wombats is only used for the servo
voltage supply. So by disabling the voltage supply it turns
the servo off.
To implement the low-level-software for this the STM32
has to toggle the corresponding port pin low which forces
the enable pin fo the 6V Regulator low. To avoid damaging

Fig. 8. wombat schematic: 6V regulator [11]

Fig. 9. wombat schematic: Servo Controller [11]

the control circuit in the Servo itself the PWM signal that
controls the position should also be turned off.

VII. NEW CAPABILITIES

Prior to this upgrade, many advanced computer vision
pipelines - such as object detection, marker tracking, or depth
estimation -were theoretically possible but practically unusable
on the Wombat’s Raspberry Pi 3B+ due to severe inference
latency.

With the Pi 5, these tasks cross into a viable speed bracket:
• YOLOv5n inference now runs at over 4FPS, enabling

advanced object detection besides simple HSV thresh-
olding.

• April tag detection reaches 47Hz, making it feasible for
accurate marker-based localization and ID recognition.

• Visual Odometry (PyrLK) hits 42Hz, allowing for ro-
bust dead-reckoning and motion estimation without wheel
encoders.

• Midas depth estimation becomes usable at 3.7FPS,
unlocking potential for obstacle detection and scene un-
derstanding.

These improvements are not just technical metrics—they
unlock entirely new strategies:

• Robots can now localize themselves using fiducial mark-
ers placed on the game table.

• Object-aware behaviors become realistic, such as reacting
to the presence, position, or type of an object.

• Vision-based path planning and motion correction via
visual odometry becomes feasible in real-time.

A. Accessibility

We acknowledge that such advancements could risk in-
creasing the gap between experienced and beginner teams.
However, our goal is the opposite: by making real-time vision
accessible with standard models and off-the-shelf hardware,
we aim to lower the barrier of entry.

Prior work supports this design philosophy. Educational
studies consistently show that simplified development environ-
ments - such as Arduino’s high-level C++ API or MicroPy-
thon on microcontrollers - lead to measurable increases in
student engagement, retention, and confidence. For instance,
retention rates rose from 71% to 92% in a first-year technical
course after a robotics-focused Arduino intervention [18], and
classroom studies have shown both faster setup times and
significantly higher engagement when using MicroPython on
platforms like the Raspberry Pi Pico [19]. These findings align
with our intention: empowering teams with minimal setup and
immediate results.

By adopting the Raspberry Pi 5 and providing properly
scaled sensor units, simplified firmware controls, and full
compatibility with the Python ecosystem, our upgrade mirrors
these educational gains in a robotics competition context. Even
basic strategies - like turning toward a detected marker -
become achievable without any machine learning expertise.

This upgrade brings not only performance, but a broader
range of creative options to all teams, regardless of experience.

VIII. CONCLUSION

This work demonstrates a pragmatic upgrade path for the
Wombat platform. With minimal cost and disruption, teams
gain significant computational headroom and improved con-
trol. The firmware and installation guide will be open-sourced
to facilitate replication.

REFERENCES

[1] KISS Institute. 2024 Botball Wombat Build Guide. 2024.
[2] OpenElab. ”Raspberry Pi 3 vs 4 vs 5: Comprehensive Comparison

Guide”, 2024.
[3] Amazon.com. ”Raspberry Pi 5 (8 GB) Product Page”, Accessed May

2025.
[4] Element14 Community. ”Raspberry Pi 5 GPIO: Is it the Same?”, 2024.
[5] Acroname. ”All About Back-EMF Motion Control”, 2023.
[6] Raspberry Pi Forum. ”Raspberry Pi 5 Benchmarks”, 2024.
[7] Amazon.com. ”Raspberry Pi 3B+ Product Page”, Accessed May 2025.
[8] Twozoh. ”Micro HDMI to HDMI Adapter”, Amazon.com, 2025.
[9] Yahoo! Tech. ”Raspberry Pi Price Trends in 2025”, 2025.

[10] ”Wombat Firmware” GitHub [Online]. Available: https://github.com/
kipr/Wombat-Firmware/tree/master Accessed on: June 2, 2025

[11] ”Wombat schematic” GitHub [Online]. Available: https:
//github.com/kipr/Wombat-Firmware/blob/master/docs/Schematics/
Wombat%20Lab%20Schematic.pdf Accessed on: June 2, 2025

[12] OpenMV. OpenMV Cam H7 Specifications. Available at: https://openmv.
io/products/openmv-cam-h7. Accessed June 9, 2025.

https://github.com/kipr/Wombat-Firmware/tree/master
https://github.com/kipr/Wombat-Firmware/tree/master
https://github.com/kipr/Wombat-Firmware/blob/master/docs/Schematics/Wombat%20Lab%20Schematic.pdf
https://github.com/kipr/Wombat-Firmware/blob/master/docs/Schematics/Wombat%20Lab%20Schematic.pdf
https://github.com/kipr/Wombat-Firmware/blob/master/docs/Schematics/Wombat%20Lab%20Schematic.pdf
https://openmv.io/products/openmv-cam-h7
https://openmv.io/products/openmv-cam-h7

[13] OpenMV. OpenMV Cam H7 Power Consumption. Available at: https:
//openmv.io/products/openmv-cam-h7. Accessed June 9, 2025.

[14] Kwabena Agyeman. Interview on OpenMV H7 Plus Performance.
Adafruit Blog, 2025. Accessed June 9, 2025.

[15] NVIDIA. NVIDIA Jetson Nano Developer Kit Product Page. Avail-
able at: https://www.amazon.com/NVIDIA-Jetson-Nano-Developer-Kit/
dp/B07PZHBDKT. Accessed June 9, 2025.

[16] NVIDIA. Jetson Nano Revs Up Youth in Worldwide Education. NVIDIA
Blog, 2024. Accessed June 9, 2025.

[17] NVIDIA. Optimizing YOLOv5 on Jetson Nano. NVIDIA Developer
Forums, 2023. Accessed June 9, 2025.

[18] J. M. de Carvalho et al., “Arduino Baby Project: Robotics as a Tool
to Support Permanence and Success of Technical Course Students in
Informatics,” in Proc. IEEE Frontiers in Education Conf. (FIE), 2021,
doi: 10.1109/FIE49875.2021.9637315.

[19] E. Dönmez and S. Gür, “Teaching Embedded Systems and IoT at the
University Using MicroPython on Raspberry Pi Pico,” in Proc. ACM
Int. Conf. Computing Education, 2024, doi: 10.1145/3635059.3635079.

https://openmv.io/products/openmv-cam-h7
https://openmv.io/products/openmv-cam-h7
https://www.amazon.com/NVIDIA-Jetson-Nano-Developer-Kit/dp/B07PZHBDKT
https://www.amazon.com/NVIDIA-Jetson-Nano-Developer-Kit/dp/B07PZHBDKT
https://doi.org/10.1109/FIE49875.2021.9637315
https://doi.org/10.1145/3635059.3635079

	Introduction
	System Overview
	Hardware Swap: RaspberryPi5
	Alternative Low-Cost Vision Controllers
	Firmware Extensions

	Cost and Feasibility
	Benchmark Results
	Motor Driver Analysis
	What is BEMF and how is it measured on the Wombat
	Analysis of KIPR's Implementation
	Improved Solution for Optimal Performance
	Measurement with the new BEMF measurement
	Performance Comparison

	Servo Mode
	New Capabilities
	Accessibility

	Conclusion
	References

